On the Distribution of Alternation Points in Uniform Polynomial Approximation of Entire Functions

Wolfgang Gehlen
Fachbereich 4, Mathematik, Universität Trier, D-54286 Trier, Germany
Communicated by Manfred v. Golitschek

Received December 12, 1996; accepted in revised form August 18, 1997

Abstract

We consider the distribution of alternation points in best real polynomial approximation of a function $f \in C[-1,1]$. For entire functions f we look for structural properties of f that will imply asymptotic equidistribution of the corresponding alternation points. © 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Suppose that $f \in C[-1,1]$ is a real valued function which is not a polynomial and let

$$
\begin{aligned}
E_{n}=E_{n}(f) & :=\min _{p \in P_{n}}\|f-p\|_{[-1,1]} \\
& =\left\|f-p_{n}^{*}\right\|_{[-1,1]}, \quad n \in \mathbb{N}_{0},
\end{aligned}
$$

denote the error of the best uniform approximation $p_{n}^{*}=p_{n}^{*}(f)$ to f in the set P_{n} of polynomials of degree at most n. By the Chebyshev equioscillation theorem there exist (not necessarily unique) alternation points $-1 \leqslant x_{1}^{(n)}<\cdots<x_{n+2}^{(n)} \leqslant 1$ such that for some $\delta_{n} \in\{-1,1\}, n \in \mathbb{N}_{0}$,

$$
\left(f-p_{n}^{*}\right)\left(x_{j}^{(n)}\right)=\delta_{n}(-1)^{j} E_{n} \quad \text { for all } \quad 1 \leqslant j \leqslant n+2 .
$$

In this note we will consider the asymptotic distribution of the corresponding unit counting measures $v_{n}, n \in \mathbb{N}_{0}$, defined by

$$
v_{n}(B)=\frac{\text { number of points } x_{j}^{(n)} \text { in } B}{n+2} \quad \text { for every set } B \subset[-1,1] .
$$

From results of Kadec it follows that

Theorem A (Kadec, cf. [6]). There exists a subsequence $L=L(f)$ of \mathbb{N}_{0} such that in the weak star topology we have

$$
\begin{equation*}
v_{n} \xrightarrow{*} \mu_{[-1,1]} \quad(n \in L), \tag{1}
\end{equation*}
$$

where $\mu_{[-1,1]}$ denotes the equilibrium distribution of $[-1,1]$.
Generalizations of this result and estimates on the discrepancy of v_{n} and $\mu_{[-1,1]}$ have been given, for example, in [1,3]. If we put $E_{n+1}=$ $\left(1-\varepsilon_{n}\right) E_{n}$, then it is known (cf. [9]) that the condition

$$
\begin{equation*}
\lim _{n \in L} \varepsilon_{n}^{1 / n}=1, \quad \text { or equivalently, } \quad \lim _{n \in L}\left(1-\frac{E_{n+1}}{E_{n}}\right)^{1 / n}=1 \tag{2}
\end{equation*}
$$

is sufficient (but not necessary) for (1).
In $[9,11]$ examples of entire functions f were constructed where (1) fails to hold for all n as $n \rightarrow \infty$. The question was raised in [9] by G. Lorentz: What structural properties of an entire function f ensure $\lim _{n \rightarrow \infty} \varepsilon_{n}^{1 / n}=1$, and thus the convergence of $\left(v_{n}\right)_{n}$ for all n as $n \rightarrow \infty$?

The following lemma gives a slightly generalized version of (2). For entire functions f it will imply a sufficient condition for (1) that depends on growth properties of f (cf. Theorem 2).

Lemma 1. Let L be a subsequence of \mathbb{N} such that

$$
\lim _{n \in L}\left(1-\frac{E_{[\alpha n]}}{E_{n}}\right)^{1 /[\alpha n]}=1 \quad \text { for all } \quad \alpha>1 .
$$

Then (1) holds for L.

Corollary. Suppose that

$$
\limsup _{n \in \mathbb{N}} E_{n}^{1 / n}=1 / r \in(0,1),
$$

i.e., $\Gamma(r)=\left\{z \in \mathbb{C}:\left|z+\left(z^{2}-1\right)^{1 / 2}\right|=r\right\}$ is the largest ellipse with foci ± 1 such that f is holomorphic inside $\Gamma(r)$. Let L be a subsequence such that

$$
\lim _{n \in L} E_{n}^{1 / n}=1 / r .
$$

Then, since $\lim \sup _{n \in L} E_{[\alpha n]}^{1 / n} \leqslant 1 / r^{\alpha}<1 / r$ for every $\alpha>1$, Lemma 1 shows that (1) holds for L.

In the subsequent text we suppose that $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ is an entire function and define

$$
\phi(r):=\max _{|z|=r}|f(z)| \quad \text { for all } \quad r>0 .
$$

Let $M:[0, \infty) \rightarrow(0, \infty)$ be a continuous function that satisfies $\lim _{r \rightarrow \infty}$ $M(r) / r^{n}=\infty$ for every $n \in \mathbb{N}$. Then the following properties hold.

Lemma 2. For every $n \in \mathbb{N}$ there exists some $r_{n}>0$ such that

$$
\frac{M\left(r_{n}\right)}{r_{n}^{n}}=\min _{r>0} \frac{M(r)}{r^{n}}=: \gamma_{n} .
$$

Further, for every choice of $r_{n}, n \in \mathbb{N}$, we have

$$
r_{n} \leqslant r_{n+1} \quad \text { and } \quad \lim _{n \rightarrow \infty} r_{n}=\infty .
$$

In what follows we suppose that $r_{n}, n \in \mathbb{N}$, is an arbitrary choice of the numbers defined in Lemma 2 and that the function M gives a majorization of $|f|$ in the following sense:

$$
\begin{equation*}
\limsup _{n \in \mathbb{N}}\left(\frac{\phi\left(r_{n}\right)}{M\left(r_{n}\right)}\right)^{1 / n} \leqslant 1 . \tag{3}
\end{equation*}
$$

Obviously, we may always choose $M=\phi$, but in many cases it might be easier to find some function M with the properties described above than to determine exact values for ϕ.

Remarks. (1) If f is of order $\rho \in(0, \infty)$ and type $\tau \in(0, \infty)$, a natural choice of M will be $M(r)=\exp \left(\tau r^{\rho}\right)$, such that

$$
r_{n}=\left(\frac{n}{\tau \rho}\right)^{1 / \rho} \quad \text { and } \quad \gamma_{n}=\left(\frac{\tau \rho e}{n}\right)^{n / \rho} .
$$

Since, in this case, we have

$$
\limsup _{r \rightarrow \infty} \frac{\log \phi(r)}{r^{\rho}}=\tau,
$$

an elementary calculation shows that (3) is satisfied.
(2) For any entire function f of finite order ρ (without restrictions on the type) we may choose $M(r)=\exp \left(r^{\rho(r)}\right)$, where $\rho(r)$ is a refined order for f (cf. [8, p. 30]).

By means of the $\gamma_{n}, n \in \mathbb{N}$, defined in Lemma 2 we can state a simple sufficient condition for (1) that corresponds to the corollary following Lemma 1.

Theorem 1. We have

$$
\limsup _{n \rightarrow \infty}\left(\frac{E_{n}}{\gamma_{n+1}}\right)^{1 / n} \leqslant \frac{1}{2},
$$

and if L is a subsequence of \mathbb{N} such that

$$
\lim _{n \in L}\left(\frac{E_{n}}{\gamma_{n+1}}\right)^{1 / n}=\frac{1}{2},
$$

then (1) holds for L.
Theorem 2 now gives a relation between the growth of f on certain radii r_{n} and the property (1) for certain subsequences L. The condition (4) is connected to the growth behavior of the majorant M (cf. Lemma 3), while (5) says that M should really match the behavior of $|f|$.

Theorem 2. Let L be a subsequence of \mathbb{N} such that for some $\delta>0$ we have

$$
\begin{equation*}
\liminf _{n \in L} \frac{r_{\left[\alpha^{\prime} n\right]}}{r_{[\alpha n]}}>1 \quad \text { for all } \quad 1 \leqslant \alpha<\alpha^{\prime} \leqslant 1+\delta \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \in L}\left(\frac{\phi\left(r_{[\alpha n]}\right)}{M\left(r_{[\alpha n]}\right)}\right)^{1 / n}=1 \quad \text { for all } \quad 1 \leqslant \alpha \leqslant 1+\delta . \tag{5}
\end{equation*}
$$

Then (1) holds for L.
We shall prove that (4) of Theorem 2 may be replaced by a condition on the growth of M. By the definition of r_{n}, we have for every $\beta>0$

$$
\left(\frac{M\left(\beta r_{n}\right)}{M\left(r_{n}\right)}\right)^{1 / n} \geqslant \frac{\beta r_{n}}{r_{n}}=\beta .
$$

Thus, Lemma 3 shows that a relatively modest growth of M at $r_{[\alpha n]}, n \in L$, implies (4).

Lemma 3. Let L be a subsequence of \mathbb{N} such that for some $\alpha \geqslant 1$ we have

$$
\begin{equation*}
\limsup _{n \in L}\left(\frac{M\left(\beta r_{[\alpha n]}\right)}{M\left(r_{[\alpha n]}\right)}\right)^{1 /[\alpha n]}=\beta+o(\beta-1) \quad\left(\beta \rightarrow 1^{+}\right) . \tag{6}
\end{equation*}
$$

Then it follows that

$$
\liminf _{n \in L} \frac{r_{\left[\alpha^{\prime} n\right]}}{r_{[\alpha n]}}>1 \quad \text { for all } \quad \alpha^{\prime}>\alpha .
$$

From Theorem 2 we immediately obtain
Theorem 3. Let f have finite order $\rho \in(0, \infty)$ and type $\tau \in(0, \infty)$ and suppose that f is of perfectly regular growth, i.e., that we have

$$
\lim _{r \rightarrow \infty} \frac{\log \phi(r)}{r^{\rho}}=\tau \quad \text { instead of } \quad \limsup _{r \rightarrow \infty} \frac{\log \phi(r)}{r^{\rho}}=\tau
$$

Then (1) holds for $L=\mathbb{N}$.
It is well known that f is of order $\rho \in(0, \infty)$ and type $\tau \in(0, \infty)$ if and only if

$$
\limsup _{n \rightarrow \infty} n^{1 / \rho}\left|a_{n}\right|^{1 / n}=(\tau \rho e)^{1 / \rho} .
$$

By [10, p. 100], f is of perfectly regular growth if and only if there exists a subsequence $\left(n_{k}\right)_{k}$ of \mathbb{N} such that $\lim _{k \rightarrow \infty} n_{k+1} / n_{k}=1$ and

$$
\lim _{k \rightarrow \infty} n_{k}^{1 / \rho}\left|a_{n_{k}}\right|^{1 / n_{k}}=(\tau \rho e)^{1 / \rho} .
$$

We note that functions of perfectly regular growth appear as solutions of linear differential equations with polynomial coefficients (cf. [5, pp. 204-208]).

Moreover, there are various results relating regularity conditions on the growth of f and the distribution of its zeros (cf., for example, [8, p. 88]).

2. PROOFS

Proof of Lemma 1. Suppose that (1) does not hold. Then there exists some $a \in(-1,1]$ and $d>0$ such that for some subsequence $\left(n_{k}\right)_{k}$ of L we have

$$
\left|v_{n_{k}}([-1, a])-\mu_{[-1,1]}([-1, a])\right| \geqslant d \quad \text { for all } \quad k \in \mathbb{N} .
$$

(1) We choose $\alpha>1$ so close to 1 that $\alpha-1<d$ and define

$$
e_{k}:=\max _{n_{k} \leqslant t \leqslant\left[\alpha n_{k}\right]-1} \varepsilon_{\ell}
$$

and

$$
m_{k}:=\min \left\{j \geqslant n_{k}: \varepsilon_{j}=e_{k} \text { or } \varepsilon_{j}>1 / j\right\} .
$$

We then have $n_{k} \leqslant m_{k} \leqslant\left[\alpha n_{k}\right]-1$ and, since

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \sup \left(1-\left(1-e_{k}\right)^{\left[\alpha n_{k}\right]-n_{k}}\right)^{1 /\left[\alpha n_{k}\right]} \\
& \quad \geqslant \limsup _{k \rightarrow \infty}\left(1-\prod_{j=n_{k}}^{\left[\alpha n_{k}\right]-1}\left(1-\varepsilon_{j}\right)\right)^{1 /\left[\alpha n_{k}\right]} \\
& \quad=\lim _{k \rightarrow \infty}\left(1-\frac{E_{\left[\alpha n_{k}\right]}}{E_{n_{k}}}\right)^{1 /\left[\alpha n_{k}\right]}=1,
\end{aligned}
$$

it follows by an elementary computation that $\lim _{k \rightarrow \infty} \varepsilon_{m_{k}}^{1 / m_{k}}=1$.
Further, we obtain that

$$
1 \geqslant \lim _{k \rightarrow \infty}\left(\frac{E_{m_{k}}}{E_{n_{k}}}\right)^{1 / m_{k}}=\lim _{k \rightarrow \infty}\left\{\prod_{j=n_{k}}^{m_{k}-1}\left(1-\varepsilon_{j}\right)\right\}^{1 / m_{k}} \geqslant \lim _{k \rightarrow \infty}\left(1-\frac{1}{n_{k}}\right)=1 .
$$

(2) The polynomial $p_{m_{k}+1}^{*}(x)-p_{m_{k}}^{*}(x)=c_{m_{k}+1} x^{m_{k}+1}+\cdots$ satisfies

$$
\begin{aligned}
\left|\left(p_{m_{k}+1}^{*}-p_{m_{k}}^{*}\right)\left(x_{j}^{\left(m_{k}\right)}\right)\right| & \geqslant\left|\left(f-p_{m_{k}}^{*}\right)\left(x_{j}^{\left(m_{k}\right)}\right)\right|-\left|\left(f-p_{m_{k}+1}^{*}\right)\left(x_{j}^{\left(m_{k}\right)}\right)\right| \\
& \geqslant E_{m_{k}}-E_{m_{k}+1}
\end{aligned}
$$

with alternating signs for all $1 \leqslant j \leqslant m_{k}+2$. Since $\min _{p \in P_{m_{k}}} \| x^{m_{k}+1}-$ $p(x) \|_{[-1,1]}=1 / 2^{m_{k}}$, this implies (cf. [4, p. 77])

$$
\left|c_{m_{k}+1}\right| \geqslant 2^{m_{k}}\left(E_{m_{k}}-E_{m_{k}+1}\right)=2^{m_{k}} \varepsilon_{m_{k}} E_{m_{k}} .
$$

The monic polynomial $\left(p_{m_{k}+1}^{*}-p_{n_{k}}^{*}\right)(x) / c_{m_{k}+1}=x^{m_{k}+1}+\cdots$ therefore satisfies

$$
\begin{aligned}
& \left\|\frac{\left(p_{m_{k}+1}^{*}-p_{n_{k}}^{*}\right)(x)}{c_{m_{k}+1}}\right\|_{[-1,1]} \\
& \quad \leqslant \frac{1}{2^{m_{k}}} \frac{\left\|\left(f-p_{n_{k}}^{*}\right)(x)\right\|_{[-1,1]}+\left\|\left(f-p_{m_{k}+1}^{*}\right)(x)\right\|_{[-1,1]}}{\varepsilon_{m_{k}} E_{m_{k}}} \\
& \quad \leqslant \frac{1}{2^{m_{k}}} \frac{E_{n_{k}}+E_{m_{k}+1}}{\varepsilon_{m_{k}} E_{m_{k}}} \leqslant \frac{1}{2^{m_{k}}} \frac{2 E_{n_{k}}}{\varepsilon_{m_{k}} E_{m_{k}}},
\end{aligned}
$$

and we obtain

$$
\limsup _{k \rightarrow \infty}\left\|\frac{\left(p_{m_{k}+1}^{*}-p_{n_{k}}^{*}\right)(x)}{c_{m_{k}+1}}\right\|_{[-1,1]}^{1 / m_{k}+1} \leqslant \frac{1}{2} .
$$

It follows by Theorem 2.1 in [2] that the zeros of $p_{m_{k}+1}^{*}-p_{n_{k}}^{*}$ are asymptotically equidistributed in $[-1,1]$. Thus, if λ_{k} denotes the number of zeros of $p_{m_{k}+1}^{*}-p_{n_{k}}^{*}$ in $\{z: \operatorname{Re}(z) \in[-1, a], \operatorname{Im}(z) \in[-1,1]\}$, we obtain

$$
\lambda_{k} /\left(m_{k}+1\right) \rightarrow \mu_{[-1,1]}([-1, a]) \quad(k \rightarrow \infty) .
$$

(3) Since

$$
\left|\left(p_{m_{k}+1}^{*}-p_{n_{k}}^{*}\right)\left(x_{j}^{\left(n_{k}\right)}\right)\right| \geqslant E_{n_{k}}-E_{m_{k}+1}
$$

with alternating signs for all $1 \leqslant j \leqslant n_{k}+2$, there must be at least one zero of $p_{m_{k}+1}^{*}-p_{n_{k}}^{*}$ in each interval $\left(x_{j}^{\left(n_{k}\right)}, x_{j+1}^{\left(n_{k}\right)}\right), 1 \leqslant j \leqslant n_{k}+1$.

Therefore, if ξ_{k} denotes the number of $x_{j}^{\left(n_{k}\right)}$ in $[-1, a]$, it is not difficult to see that

$$
\xi_{k} \leqslant \lambda_{k}+1 \quad \text { and } \quad \lambda_{k} \leqslant m_{k}-\left(n_{k}-\xi_{k}\right)
$$

and thus

$$
\frac{\lambda_{k}-\left(m_{k}-n_{k}\right)}{n_{k}+2} \leqslant v_{n_{k}}([-1, a])=\frac{\xi_{k}}{n_{k}+2} \leqslant \frac{\lambda_{k}+1}{n_{k}+2} .
$$

An elementary computation yields

$$
\begin{aligned}
\alpha \mu_{[-1,1]}([-1, a])-(\alpha-1) & \leqslant \liminf _{k \rightarrow \infty} v_{n_{k}}([-1, a]) \leqslant \limsup _{k \rightarrow \infty} v_{n_{k}}([-1, a]) \\
& \leqslant \alpha \mu_{[-1,1]}([-1, a]),
\end{aligned}
$$

which by our choice of α, contradicts the assumption on $v_{n_{k}}([-1, a])$.
Proof of Lemma 2. Since

$$
\lim _{r \rightarrow 0} \frac{M(r)}{r^{n}}=\lim _{r \rightarrow \infty} \frac{M(r)}{r^{n}}=\infty,
$$

it is clear that r_{n} exists.
(1) Suppose that $r_{n+1}<r_{n}$. By the definition of r_{n+1} we have

$$
\frac{M\left(r_{n+1}\right)}{r_{n+1}^{n+1}} \leqslant \frac{M\left(r_{n}\right)}{r_{n}^{n+1}},
$$

and thus

$$
\frac{M\left(r_{n+1}\right)}{r_{n+1}^{n}} \leqslant \frac{M\left(r_{n}\right)}{r_{n}^{n}} \frac{r_{n+1}}{r_{n}}<\frac{M\left(r_{n}\right)}{r_{n}^{n}},
$$

which contradicts the definition of r_{n}.
(2) Suppose that there exists some $r>0$ such that $r_{n} \leqslant r$ for all $n \in \mathbb{N}$. Then, for every $s>r$,

$$
M(s) \geqslant s^{n} \frac{M\left(r_{n}\right)}{r_{n}^{n}} \geqslant s^{n} \frac{\min _{t \in[0, r]} M(t)}{r^{n}} \quad \text { for all } \quad n \in \mathbb{N},
$$

which would imply that $M(s)=\infty$.
Proof of Lemma 3. If we suppose that $\lim _{\inf _{n \in L}}\left(r_{\left[\alpha^{\prime} n\right]} / r_{[\alpha n]}\right)=1$ for some $\alpha^{\prime}>\alpha$, then, since

$$
\left(\frac{r_{[\alpha n]}}{r_{\left[\alpha^{\prime} n\right]}}\right)^{[\alpha n]} \geqslant \frac{M\left(r_{[\alpha n]}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)} \geqslant\left(\frac{r_{[\alpha n]}}{r_{\left[\alpha^{\prime} n\right]}}\right)^{\left[\alpha^{\prime} n\right]},
$$

there exists a subsequence \tilde{L} of L such that

$$
\lim _{n \in \tilde{L}}\left(\frac{M\left(r_{[\alpha n]}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 /[\alpha n]}=1 .
$$

Thus, for every $\beta>1$

$$
\begin{aligned}
\limsup _{n \in L}\left(\frac{M\left(\beta r_{[\alpha n]}\right)}{M\left(r_{[\alpha n]}\right)}\right)^{1 /[\alpha n]} & \geqslant \limsup _{n \in \tilde{L}}\left(\frac{M\left(\beta r_{[\alpha n]}\right)}{M\left(r_{[\alpha n]}\right)}\right)^{1 /[\alpha n]} \\
& =\limsup _{n \in \tilde{L}}\left(\frac{M\left(\beta r_{[\alpha n]}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 /[\alpha n]} \\
& \geqslant \limsup _{n \in \tilde{L}}\left(\frac{\beta r_{[\alpha n]}}{r_{\left[\alpha^{\prime} n\right]}}\right)^{\left[\alpha^{\prime} n\right] /[\alpha n]}=\beta^{\alpha^{\prime} / \alpha},
\end{aligned}
$$

which contradicts (6).
We state some simple inequalities which are needed in the proof of Theorem 1 and Theorem 2.

Lemma 4. For $m \geqslant n$ we have

$$
\left(\frac{r_{m}}{r_{n}}\right)^{n} \leqslant \frac{r_{m}^{m-1}}{r_{n}^{n}} \prod_{j=n+1}^{m-1} \frac{1}{r_{j}} \leqslant \frac{M\left(r_{m}\right)}{M\left(r_{n}\right)} \leqslant \frac{r_{m}^{m}}{r_{n}^{n+1}} \prod_{j=n+1}^{m-1} \frac{1}{r_{j}} \leqslant\left(\frac{r_{m}}{r_{n}}\right)^{m},
$$

and

$$
\left(\frac{1}{r_{m}}\right)^{m-n} \leqslant \frac{\gamma_{m}}{\gamma_{n}} \leqslant\left(\frac{1}{r_{n}}\right)^{m-n} .
$$

Proof of Lemma 4. By the definition of r_{j} and Lemma 2 it follows that

$$
\frac{M\left(r_{m}\right)}{M\left(r_{n}\right)}=\prod_{j=n}^{m-1} \frac{M\left(r_{j+1}\right)}{M\left(r_{j}\right)} \leqslant \prod_{j=n}^{m-1} \frac{r_{j+1}^{j+1}}{r_{j}^{j+1}}=\frac{r_{m}^{m}}{r_{n}^{m+1}} \prod_{j=n+1}^{m-1} \frac{1}{r_{j}} \leqslant\left(\frac{r_{m}}{r_{n}}\right)^{m},
$$

and

$$
\frac{M\left(r_{m}\right)}{M\left(r_{n}\right)}=\prod_{j=n}^{m-1} \frac{M\left(r_{j+1}\right)}{M\left(r_{j}\right)} \geqslant \prod_{j=n}^{m-1} \frac{r_{j+1}^{j}}{r_{j}^{j}}=\frac{r_{m}^{m-1}}{r_{n}^{n}} \prod_{j=n+1}^{m-1} \frac{1}{r_{j}} \geqslant\left(\frac{r_{m}}{r_{n}}\right)^{n} .
$$

Since $\gamma_{m} / \gamma_{n}=\left(M\left(r_{m}\right) / M\left(r_{n}\right)\right)\left(r_{n}^{n} / r_{m}^{m}\right)$, we obtain all estimates stated in the lemma.

Proof of Theorem 1. (1) Let $p_{n} \in P_{n}$ denote the polynomial that interpolates to f in the $n+1$ zeros of the Chebyshev polynomial $T_{n+1}(x)=$ $\cos ((n+1) \operatorname{arc} \cos (x)) / 2^{n}=x^{n+1}+\cdots$. By [12, p. 50] we then have

$$
\begin{aligned}
E_{n} & \leqslant\left\|\left(f-p_{n}\right)(x)\right\|_{[-1,1]}=\left\|T_{n+1}(x) \frac{1}{2 \pi i} \int_{|\zeta|=r_{n+1}} \frac{f(\zeta)}{T_{n+1}(\zeta)} \frac{1}{\zeta-x} d \zeta\right\|_{[-1,1]} \\
& \leqslant \frac{1}{2^{n}} \frac{M\left(r_{n+1}\right)}{\left(r_{n+1}-1\right)^{n+1}} \frac{r_{n+1}}{r_{n+1}-1}=\frac{1}{2^{n}} \gamma_{n+1}\left(\frac{r_{n+1}}{r_{n+1}-1}\right)^{n+2} .
\end{aligned}
$$

Since, by Lemma 2, $\lim _{n \rightarrow \infty} r_{n}=\infty$, this implies the first statement.
(2) Suppose that L is a subsequence such that

$$
\lim _{n \in L}\left(\frac{E_{n}}{\gamma_{n+1}}\right)^{1 / n}=\frac{1}{2} .
$$

By the first part and Lemma 4 it follows that for every $\alpha>1$

$$
\limsup _{n \in L}\left(\frac{E_{[\alpha n]}}{\gamma_{[\alpha n]+1}}\right)^{1 /[\alpha n]} \leqslant \frac{1}{2} \quad \text { and } \quad \frac{\gamma_{[\alpha n]+1}}{\gamma_{n+1}} \leqslant\left(\frac{1}{r_{n+1}}\right)^{[\alpha n]-n} \text {. }
$$

An elementary calculation then shows that $\lim _{n \in L} E_{[\alpha n]} / E_{n}=0$, and Lemma 1 yields (1) for the subsequence L.

Proof of Theorem 2. (1) Suppose that (1) does not hold. Then, by Lemma 1, there exists some $\tilde{\alpha}>1$ such that

$$
\liminf _{n \in L}\left(1-\frac{E_{[\tilde{\alpha} n]}}{E_{n}}\right)^{1 /[\tilde{\alpha} n]}<1,
$$

and thus for some subsequence \tilde{L} of L

$$
\lim _{n \in \tilde{L}} \frac{E_{[\tilde{L} n]}}{E_{n}}=1 .
$$

Without loss of generality we may assume that $\tilde{\alpha} \in(1,1+\delta)$ and that $\tilde{L}=L$.

We fix some $\alpha \in(1, \tilde{\alpha})$ and obtain by Theorem 1 and Lemma 4

$$
\begin{aligned}
\limsup _{n \in L}\left(\frac{E_{n}}{\gamma_{[\alpha n]}}\right)^{1 /[\alpha n]} & =\lim _{n \in L} \sup \left(\frac{\left.E_{[\tilde{\alpha} n]} \frac{\gamma_{[\tilde{\alpha} n]}}{\gamma_{[\tilde{\alpha} n]}}\right)_{[\alpha n]}^{1 /[\alpha n]}}{}\right. \\
& \leqslant\left(\frac{1}{2}\right)^{\tilde{\alpha} / \alpha} \limsup _{n \in L}\left(\frac{\gamma_{[\tilde{\alpha} n]}}{\gamma_{[\alpha n]}}\right)^{1 /[\alpha n]} \\
& \leqslant\left(\frac{1}{2}\right)^{\tilde{\alpha} / \alpha} \limsup _{n \in L}\left(\frac{1}{r_{[\alpha n]]}^{[\tilde{\tilde{c} n}]-[\alpha n]}}\right)^{1 /[\alpha n]}=0 .
\end{aligned}
$$

(2) It is well known that $\lim _{n \rightarrow \infty} p_{n}^{*}(z)=f(z)$, and thus

$$
f(z)=p_{0}^{*}+\sum_{j=1}^{\infty} p_{j}^{*}(z)-p_{j-1}^{*}(z),
$$

locally uniformly for all $z \in \mathbb{C}$.
For every $n \in \mathbb{N}$ we put $R_{n}:=r_{n}+\left(r_{n}^{2}+1\right)^{1 / 2}$. Then, $\left\{z:|z| \leqslant r_{n}\right\}$ is contained inside the ellipse $\left\{z:\left|z+\left(z^{2}-1\right)^{1 / 2}\right|=R_{n}\right\}$. Since $\lim _{n \rightarrow \infty} r_{n}=\infty$, we have

$$
R_{n}=2 r_{n}\left(1+d_{n}^{(1)}\right), \quad \text { where } \quad \lim _{n \rightarrow \infty} d_{n}^{(1)}=0
$$

We fix some $\alpha^{\prime} \in(1, \alpha)$. For all $|z|=r_{\left[\alpha^{\prime} n\right]}$ the Bernstein-Walsh Lemma (cf. 12, p. 77]) yields

$$
\begin{aligned}
|f(z)| & =\left|p_{0}^{*}+\sum_{j=1}^{\infty}\left(p_{j}^{*}-p_{j-1}^{*}\right)(z)\right| \leqslant\left|p_{0}^{*}\right|+\sum_{j=1}^{\infty}\left\|p_{j}^{*}-p_{j-1}^{*}\right\|_{[-1,1]} R_{\left[\alpha^{\prime} n\right]}^{j} \\
& \leqslant\left|p_{0}^{*}\right|+\sum_{j=1}^{\infty}\left(\left\|f-p_{j-1}^{*}\right\|_{[-1,1]}+\left\|f-p_{j}^{*}\right\|_{[-1,1]}\right) R_{\left[\alpha^{\prime} n\right]}^{j} \\
& \leqslant\left|p_{0}^{*}\right|+\sum_{j=1}^{\infty} 2 E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j} .
\end{aligned}
$$

By Theorem 1 we have

$$
E_{j-1} \leqslant \frac{\gamma_{j}}{2^{j}}\left(1+d_{j}^{(2)}\right)^{j}, \quad \text { where } \quad \lim _{j \rightarrow \infty} d_{j}^{(2)}=0 .
$$

To estimate $|f(z)|$ for $|z|=r_{\left[\alpha^{\prime} n\right]}$ we split the series $\sum_{j=1}^{\infty} E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j}$ into three parts

$$
\sum_{j=1}^{\infty} E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j}=\sum_{j=1}^{n} \cdots+\sum_{j=n+1}^{[\alpha n]} \cdots+\sum_{j=[\alpha n]+1}^{\infty} \cdots=S_{1, n}+S_{2, n}+S_{3, n} .
$$

(a) For every $1 \leqslant j \leqslant n$ we have by Lemma 4

$$
\begin{aligned}
E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j} & \leqslant \frac{1}{2^{j}} \gamma_{j} R_{\left[\alpha^{\prime} n\right]}^{j}\left(1+d_{j}^{(2)}\right)^{j} \leqslant \gamma_{j} r_{\left[\alpha_{n}^{\prime}\right]}^{j}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
& =M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{\frac{M\left(r_{j}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)} \frac{r_{\left[\alpha^{\prime} n\right]}^{j}}{r_{j}^{j}}\right\}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
& \leqslant M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{\frac{r_{j}^{j}}{\left.r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime}\right]}\right]-1}\left(\prod_{k=j+1}^{\left[\alpha^{\prime} n\right]-1} r_{k}\right) \frac{r_{\left[\alpha^{\prime} n\right]}^{j}}{r_{j}^{j}}\right\}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
& =M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{\frac{1}{r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime} n\right]-1-j}}\left(\prod_{k=j+1}^{\left[\alpha^{\prime} n\right]-1} r_{k}\right)\right\}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} .
\end{aligned}
$$

We choose some arbitrary $\alpha^{\prime \prime} \in\left(1, \alpha^{\prime}\right)$. Lemma 2 yields

$$
\begin{aligned}
\{\cdots\} & =\frac{1}{r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime} n\right]-1-j}}\left(\prod_{k=j+1}^{\left[\alpha^{\prime \prime} n\right]-1} r_{k}\right) \frac{1}{r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime} n\right]-\left[\alpha^{\prime \prime n} n\right]}}\left(\prod_{k=\left[\alpha^{\prime \prime} n\right]}^{\left[\alpha^{\prime} n\right]-1} r_{k}\right) \\
& \leqslant \frac{1}{r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime} n\right]-1-j}}\left(\prod_{k=j+1}^{\left[\alpha^{\prime \prime n} n-1\right.} r_{k}\right) \leqslant\left(\frac{r_{\left[\alpha^{\prime \prime} n\right]}}{r_{\left[\alpha^{\prime} n\right]}}\right)^{\left[\alpha^{\prime \prime} n\right]-j-1} \\
& \leqslant\left(\frac{r_{\left[\alpha^{\prime \prime} n\right]}}{r_{\left[\alpha^{\prime} n\right]}}\right)^{\left[\alpha^{\prime \prime} n\right]-n-1} .
\end{aligned}
$$

In view of (4), an elementary computation gives

$$
\limsup _{n \in L}\left(\frac{S_{1, n}}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 / n}<1 .
$$

(b) By our choice of α we have $E_{n}=\delta_{n}^{[\alpha n]} \gamma_{[\alpha n]}$, where $\lim _{n \in L} \delta_{n}=0$. Therefore, for all $n+1 \leqslant j \leqslant[\alpha n]$,

$$
\begin{aligned}
E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j} & \leqslant E_{n} R_{\left[\alpha^{\prime} n\right]}^{[\alpha n]}=2^{[\alpha n]} E_{n} r_{\left[\alpha^{\prime} n\right]}^{[\alpha n]}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{[\alpha n]} \\
& =2^{[\alpha n]} \delta_{n}^{[\alpha n]} \gamma_{[\alpha n]} r_{\left[\alpha^{\prime} n\right]}^{[\alpha n]}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{[\alpha n]} \\
& =M\left(r_{\left[\alpha^{\prime} n\right]}\right) 2^{[\alpha n]}\left\{\delta_{n}^{[\alpha n]} \frac{M\left(r_{[\alpha n]}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{[\alpha n]}}\right)^{[\alpha n]}\right\}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{[\alpha n]} \\
& \leqslant M\left(r_{\left[\alpha^{\prime} n\right]}\right) 2^{[\alpha n]} \delta_{n}^{[\alpha n]}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{[\alpha n]},
\end{aligned}
$$

where the last inequality follows by the definition of $r_{[\alpha n]}$. We obtain

$$
\limsup _{n \in L}\left(\frac{S_{2, n}}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 / n}=0 .
$$

(c) For every $j>[\alpha n]$ we have by Lemma 4

$$
\begin{aligned}
E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j} \leqslant & \gamma_{j} r_{\left[\alpha^{\prime} n\right]}^{j}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
= & M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{\frac{M\left(r_{j}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)} \frac{r_{\left[\alpha^{\prime} n\right]}^{j}}{r_{j}^{j}}\right\}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
\leqslant & M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{\frac{r_{j}^{j}}{r_{\left[\alpha^{\prime} n\right]}^{[n]+1}}\left(\prod_{k=\left[\alpha^{\prime} n\right]+1}^{j-1} \frac{1}{r_{k}}\right) \frac{r_{\left[\alpha^{\prime} n\right]}^{j}}{r_{j}^{j}}\right\} \\
& \times\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left.\left[\alpha^{\prime} n\right]\right]}^{(1)}\right)^{j} \\
= & M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left\{r_{\left[\alpha^{\prime} n\right]}^{j-1-\left[\alpha^{\prime} n\right]}\left(\prod_{k=\left[\alpha^{\prime} n\right]+1}^{j-1} \frac{1}{r_{k}}\right)\right\}\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} .
\end{aligned}
$$

We choose some arbitrary $\alpha^{\prime \prime} \in\left(\alpha^{\prime}, \alpha\right)$. Lemma 2 yields

$$
\begin{aligned}
\{\cdots\} & \leqslant r_{\left[\alpha^{\prime} n\right]}^{\left[\alpha^{\prime \prime} n\right]-\left[\alpha^{\prime} n\right]-1}\left(\prod_{k=\left[\alpha^{\prime} n\right]+1}^{\left[\alpha^{\prime \prime n} n-1\right.} \frac{1}{r_{k}}\right) r_{\left[\alpha^{\prime} n\right]}^{j-\left[\alpha^{\prime \prime} n\right]}\left(\prod_{k=\left[\alpha^{\prime \prime} n\right]}^{j-1} \frac{1}{r_{k}}\right) \\
& \leqslant r_{\left[\alpha^{\prime} n\right]}^{j-\left[\alpha^{\prime \prime} n\right]}\left(\prod_{k=\left[\alpha^{\prime \prime} n\right]}^{j-1} \frac{1}{r_{k}}\right) \leqslant\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{\left[\alpha^{\prime \prime} n\right]}}\right)^{j-\left[\alpha^{\prime \prime} n\right]},
\end{aligned}
$$

and thus we obtain that

$$
\begin{aligned}
\sum_{j=[\alpha n]+1}^{\infty} E_{j-1} R_{\left[\alpha^{\prime} n\right]}^{j} \leqslant & M\left(r_{\left[\alpha^{\prime} n\right]}\right) \sum_{j=[\alpha n]+1}^{\infty}\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{\left[\alpha^{\prime \prime} n\right]}}\right)^{j-\alpha^{\prime \prime} n} \\
& \times\left(1+d_{j}^{(2)}\right)^{j}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j} \\
\leqslant & M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{\left[\alpha^{\prime \prime} n\right]}}\right)^{[\alpha n]-\left[\alpha^{\prime \prime} n\right]} \sum_{j=1}^{\infty}\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{\left[\alpha^{\prime \prime} n\right]}}\right)^{j} \\
& \times\left(1+d_{j+[\alpha n]}^{(2)}\right)^{j+[\alpha n]}\left(1+d_{\left[\alpha^{\prime} n\right]}^{(1)}\right)^{j+[\alpha n]} \\
= & M\left(r_{\left[\alpha^{\prime} n\right]}\right)\left(\frac{r_{\left[\alpha^{\prime} n\right]}}{r_{\left[\alpha^{\prime \prime} n\right]}}\right)^{[\alpha n]-\left[\alpha^{\prime \prime} n\right]} S_{n} .
\end{aligned}
$$

An elementary calculation shows that each series $S_{n}, n \in \mathbb{N}$, is convergent and that $\lim _{n \rightarrow \infty} S_{n}^{1 / n}=1$. Hence, we have by (4)

$$
\limsup _{n \in L}\left(\frac{S_{3, n}}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 / n}<1 .
$$

Putting (a), (b), and (c) together we obtain that for some $\alpha^{\prime} \in(1,1+\delta)$

$$
\limsup _{n \in L}\left(\frac{\phi\left(r_{\left[\alpha^{\prime} n\right]}\right)}{M\left(r_{\left[\alpha^{\prime} n\right]}\right)}\right)^{1 / n}<1
$$

which contradicts (5).
Proof of Theorem 3. We choose

$$
M(r)=\exp \left(\tau r^{\rho}\right), \quad \text { i.e., } \quad r_{n}=\left(\frac{n}{\tau \rho}\right)^{1 / \rho}
$$

and obtain that for all $1 \leqslant \alpha<\alpha^{\prime}$

$$
\lim _{n \rightarrow \infty} \frac{r_{\left[\alpha^{\prime} n\right]}}{r_{[\alpha n]}}=\left(\frac{\alpha^{\prime}}{\alpha}\right)^{1 / p}>1 .
$$

Further, since f is of perfectly regular growth, we have

$$
\tau=\lim _{r \rightarrow \infty} \frac{\log \phi(r)}{r^{\rho}}=\lim _{n \rightarrow \infty} \frac{\log \phi\left(r_{n}\right)}{r_{n}^{\rho}}=\tau \rho \lim _{n \rightarrow \infty} \log \phi\left(r_{n}\right)^{1 / n},
$$

which implies

$$
\lim _{n \rightarrow \infty}\left(\frac{\phi\left(r_{n}\right)}{M\left(r_{n}\right)}\right)^{1 / n}=1 .
$$

By Theorem 2 it follows that (1) holds for $L=\mathbb{N}$.

REFERENCES

1. H. P. Blatt, On the distribution of simple zeros of polynomials, J. Approx. Theory 69 (1992), 250-268.
2. H. P. Blatt, E. B. Saff, and M. Simkani, Jentzsch-Szegö-type theorems for the zeros of best approximants, J. London Math. Soc. (2) 38 (1988), 307-316.
3. H. P. Blatt, E. B. Saff, and V. Totik, The distribution of extreme points in best complex polynomial approximation, Constr. Approx. 5 (1989), 357-370.
4. E. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
5. G. Jank and L. Volkmann, "Meromorphe Funktionen und Differentialgleichungen," Birkhäuser Verlag, Basel, 1985.
6. M. I. Kadec, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, in "Amer. Math. Soc. Transl.," Vol. 26, pp. 231-234, Amer. Math. Soc., Providence, RI, 1963.
7. A. Kroó and E. B. Saff, The density of extreme points in complex polynomial approximation, Proc. Amer. Math. Soc. 103 (1988), 203-209.
8. B. J. Lewin, "Nullstellenverteilung ganzer Funktionen," Akademie-Verlag, Berlin, 1962.
9. G. G. Lorentz, Distribution of alternation points in uniform polynomial approximation, Proc. Amer. Math. Soc. 92 (1984), 401-403.
10. A. R. Reddy, Best polynomial approximation to certain entire functions, J. Approx. Theory 5 (1972), 97-112.
11. E. B. Saff and V. Totik, Behavior of polynomials of best uniform approximation, Trans. Amer. Math. Soc. 316 (1989), 567-593.
12. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, in "Amer. Math. Soc. Colloq. Publ.," Vol. 20, Amer. Math. Soc., Providence, RI, 1969.
