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We consider the distribution of alternation points in best real polynomial
approximation of a function f # C[&1, 1]. For entire functions f we look for struc-
tural properties of f that will imply asymptotic equidistribution of the correspond-
ing alternation points. � 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Suppose that f # C[&1, 1] is a real valued function which is not a poly-
nomial and let

En=En( f ) :=min
p # Pn

& f& p&[&1, 1]

=& f& p*n &[&1, 1] , n # N0 ,

denote the error of the best uniform approximation p*n= p*n ( f ) to f in the
set Pn of polynomials of degree at most n. By the Chebyshev equioscillation
theorem there exist (not necessarily unique) alternation points
&1�x (n)

1 < } } } <x (n)
n+2�1 such that for some $n # [&1, 1], n # N0 ,

( f & p*n)(x (n)
j )=$n(&1) j En for all 1� j�n+2.

In this note we will consider the asymptotic distribution of the correspond-
ing unit counting measures &n , n # N0 , defined by

&n(B)=
number of points x (n)

j in B
n+2

for every set B/[&1, 1].
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From results of Kadec it follows that

Theorem A (Kadec, cf. [6]). There exists a subsequence L=L( f ) of
N0 such that in the weak star topology we have

&n *� +[&1, 1] (n # L), (1)

where +[&1, 1] denotes the equilibrium distribution of [&1, 1].

Generalizations of this result and estimates on the discrepancy of &n and
+[&1, 1] have been given, for example, in [1, 3]. If we put En+1=
(1&=n) En , then it is known (cf. [9]) that the condition

lim
n # L

=1�n
n =1, or equivalently, lim

n # L \1&
En+1

En +
1�n

=1 (2)

is sufficient (but not necessary) for (1).
In [9, 11] examples of entire functions f were constructed where (1) fails

to hold for all n as n � �. The question was raised in [9] by G. Lorentz:
What structural properties of an entire function f ensure limn � � =1�n

n =1,
and thus the convergence of (&n)n for all n as n � �?

The following lemma gives a slightly generalized version of (2). For
entire functions f it will imply a sufficient condition for (1) that depends on
growth properties of f (cf. Theorem 2).

Lemma 1. Let L be a subsequence of N such that

lim
n # L \1&

E[:n]

En +
1�[:n]

=1 for all :>1.

Then (1) holds for L.

Corollary. Suppose that

lim sup
n # N

E 1�n
n =1�r # (0, 1),

i.e., 1(r)=[z # C: |z+(z2&1)1�2|=r] is the largest ellipse with foci \1
such that f is holomorphic inside 1(r). Let L be a subsequence such that

lim
n # L

E 1�n
n =1�r.

Then, since lim supn # L E 1�n
[:n]�1�r:<1�r for every :>1, Lemma 1 shows

that (1) holds for L.
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In the subsequent text we suppose that f (z)=��
j=0 ajz j is an entire

function and define

,(r) :=max
|z|=r

| f (z)| for all r>0.

Let M: [0, �) � (0, �) be a continuous function that satisfies limr � �

M(r)�rn=� for every n # N. Then the following properties hold.

Lemma 2. For every n # N there exists some rn>0 such that

M(rn)
rn

n

=min
r>0

M(r)
rn =: #n .

Further, for every choice of rn , n # N, we have

rn�rn+1 and lim
n � �

rn=�.

In what follows we suppose that rn , n # N, is an arbitrary choice of the
numbers defined in Lemma 2 and that the function M gives a majorization
of | f | in the following sense:

lim sup
n # N \ ,(rn)

M(rn)+
1�n

�1. (3)

Obviously, we may always choose M=,, but in many cases it might be
easier to find some function M with the properties described above than to
determine exact values for ,.

Remarks. (1) If f is of order \ # (0, �) and type { # (0, �), a natural
choice of M will be M(r)=exp({r\), such that

rn=\ n
{\+

1�\

and #n=\{\e
n +

n�\

.

Since, in this case, we have

lim sup
r � �

log ,(r)
r\ ={,

an elementary calculation shows that (3) is satisfied.

(2) For any entire function f of finite order \ (without restrictions on
the type) we may choose M(r)=exp(r\(r)), where \(r) is a refined order for
f (cf. [8, p. 30]).
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By means of the #n , n # N, defined in Lemma 2 we can state a simple suf-
ficient condition for (1) that corresponds to the corollary following
Lemma 1.

Theorem 1. We have

lim sup
n � � \ En

#n+1+
1�n

�
1
2

,

and if L is a subsequence of N such that

lim
n # L \

En

#n+1+
1�n

=
1
2

,

then (1) holds for L.

Theorem 2 now gives a relation between the growth of f on certain radii
rn and the property (1) for certain subsequences L. The condition (4) is
connected to the growth behavior of the majorant M (cf. Lemma 3), while
(5) says that M should really match the behavior of | f |.

Theorem 2. Let L be a subsequence of N such that for some $>0 we
have

lim inf
n # L

r[:$n]

r[:n]

>1 for all 1�:<:$�1+$ (4)

and

lim
n # L \

,(r[:n])
M(r[:n])+

1�n

=1 for all 1�:�1+$. (5)

Then (1) holds for L.

We shall prove that (4) of Theorem 2 may be replaced by a condition on
the growth of M. By the definition of rn , we have for every ;>0

\M(;rn)
M(rn) +

1�n

�
;rn

rn
=;.

Thus, Lemma 3 shows that a relatively modest growth of M at r[:n] , n # L,
implies (4).
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Lemma 3. Let L be a subsequence of N such that for some :�1 we have

lim sup
n # L \M(;r[:n])

M(r[:n]) +
1�[:n]

=;+o(;&1) (; � 1+). (6)

Then it follows that

lim inf
n # L

r[:$n]

r[:n]

>1 for all :$>:.

From Theorem 2 we immediately obtain

Theorem 3. Let f have finite order \ # (0, �) and type { # (0, �) and
suppose that f is of perfectly regular growth, i.e., that we have

lim
r � �

log ,(r)
r\ ={ instead of lim sup

r � �

log ,(r)
r\ ={.

Then (1) holds for L=N.

It is well known that f is of order \ # (0, �) and type { # (0, �) if and
only if

lim sup
n � �

n1�\ |an |1�n=({\e)1�\.

By [10, p. 100], f is of perfectly regular growth if and only if there exists
a subsequence (nk)k of N such that limk � � nk+1 �nk=1 and

lim
k � �

n1�\
k |ank | 1�nk=({\e)1�\.

We note that functions of perfectly regular growth appear as solutions
of linear differential equations with polynomial coefficients (cf. [5,
pp. 204�208]).

Moreover, there are various results relating regularity conditions on the
growth of f and the distribution of its zeros (cf., for example, [8, p. 88]).

2. PROOFS

Proof of Lemma 1. Suppose that (1) does not hold. Then there exists
some a # (&1, 1] and d>0 such that for some subsequence (nk)k of L we
have

|&nk([&1, a])&+[&1, 1]([&1, a])|�d for all k # N.
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(1) We choose :>1 so close to 1 that :&1<d and define

ek := max
nk�l�[:nk]&1

=l

and

mk :=min[ j�nk : =j=ek or =j>1�j].

We then have nk�mk�[:nk]&1 and, since

lim sup
k � �

(1&(1&ek)[:nk]&nk)1�[:nk]

�lim sup
k � � \1& `

[:nk]&1

j=nk

(1&=j)+
1�[:nk]

= lim
k � � \1&

E[:nk]

Enk
+

1�[:nk]

=1,

it follows by an elementary computation that limk � � =1�mk
mk

=1.
Further, we obtain that

1� lim
k � � \

Emk

Enk
+

1�mk

= lim
k � � { `

mk&1

j=nk

(1&=j)=
1�mk

� lim
k � � \1&

1
nk+=1.

(2) The polynomial p*mk+1(x)& p*mk
(x)=cmk+1xmk+1+ } } } satisfies

|( p*mk+1& p*mk
)(x (mk)

j )|�|( f & p*mk
)(x (mk)

j )|&|( f & p*mk+1)(x (mk)
j )|

�Emk
&Emk+1

with alternating signs for all 1� j�mk+2. Since minp # Pmk
&xmk+1&

p(x)&[&1, 1]=1�2mk, this implies (cf. [4, p. 77])

|cmk+1 |�2mk(Emk
&Emk+1)=2mk=mk

Emk
.

The monic polynomial ( p*mk+1& p*n k
)(x)�cmk+1=xmk+1+ } } } therefore satisfies

"
( p*mk+1& p*n k

)(x)

cmk+1 "[&1, 1]

�
1

2mk

&( f & p*n k
)(x)&[&1, 1]+&( f & p*mk+1)(x)&[&1, 1]

=mk
Emk

�
1

2mk

En k
+Emk+1

=mk
Emk

�
1

2mk

2Enk

=mk
Emk

,
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and we obtain

lim sup
k � � "

( p*mk+1& p*nk
)(x)

cmk+1 "
1�mk+1

[&1, 1]

�
1
2

.

It follows by Theorem 2.1 in [2] that the zeros of p*mk+1& p*nk
are

asymptotically equidistributed in [&1, 1]. Thus, if *k denotes the number
of zeros of p*mk+1& p*n k

in [z: Re(z) # [&1, a], Im(z) # [&1, 1]], we obtain

*k �(mk+1) � +[&1, 1]([&1, a]) (k � �).

(3) Since

|( p*mk+1& p*n k
)(x (nk)

j )|�Enk
&Emk+1

with alternating signs for all 1� j�nk+2, there must be at least one zero
of p*mk+1& p*n k

in each interval (x (nk)
j , x (nk)

j+1), 1� j�nk+1.
Therefore, if !k denotes the number of x (nk)

j in [&1, a], it is not difficult
to see that

!k�*k+1 and *k�mk&(nk&!k),

and thus

*k&(mk&nk)
nk+2

�&nk
([&1, a])=

!k

nk+2
�

*k+1
nk+2

.

An elementary computation yields

:+[&1, 1]([&1, a])&(:&1)�lim inf
k � �

&nk
([&1, a])�lim sup

k � �
&nk

([&1, a])

�:+[&1, 1]([&1, a]),

which by our choice of :, contradicts the assumption on &nk
([&1, a]).

Proof of Lemma 2. Since

lim
r � 0

M(r)
rn = lim

r � �

M(r)
rn =�,

it is clear that rn exists.

(1) Suppose that rn+1<rn . By the definition of rn+1 we have

M(rn+1)
rn+1

n+1

�
M(rn)
rn+1

n

,
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and thus

M(rn+1)
rn

n+1

�
M(rn)

rn
n

rn+1

rn
<

M(rn)
rn

n

,

which contradicts the definition of rn .

(2) Suppose that there exists some r>0 such that rn�r for all n # N.
Then, for every s>r,

M(s)�sn M(rn)
rn

n

�sn mint # [0, r] M(t)
rn for all n # N,

which would imply that M(s)=�.

Proof of Lemma 3. If we suppose that lim infn # L(r[:$n] �r[:n])=1 for
some :$>:, then, since

\ r[:n]

r[:$n] +
[:n]

�
M(r[:n])
M(r[:$n])

�\ r[:n]

r[:$n]+
[:$n]

,

there exists a subsequence L� of L such that

lim
n # L� \

M(r[:n])
M(r[:$n])+

1�[:n]

=1.

Thus, for every ;>1

lim sup
n # L \M(;r[:n])

M(r[:n]) +
1�[:n]

�lim sup
n # L� \M(;r[:n])

M(r[:n]) +
1�[:n]

=lim sup
n # L� \M(;r[:n])

M(r[:$n]) +
1�[:n]

�lim sup
n # L� \;r[:n]

r[:$n] +
[:$n]�[:n]

=;:$�:,

which contradicts (6).

We state some simple inequalities which are needed in the proof of
Theorem 1 and Theorem 2.

Lemma 4. For m�n we have

\rm

rn +
n

�
rm&1

m

rn
n

`
m&1

j=n+1

1
rj

�
M(rm)
M(rn)

�
rm

m

rn+1
n

`
m&1

j=n+1

1
rj

�\rm

rn +
m

,
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and

\ 1
rm+

m&n

�
#m

#n
�\ 1

rn+
m&n

.

Proof of Lemma 4. By the definition of rj and Lemma 2 it follows that

M(rm)
M(rn)

= `
m&1

j=n

M(r j+1)
M(r j)

� `
m&1

j=n

r j+1
j+1

r j+1
j

=
rm

m

rn+1
n

`
m&1

j=n+1

1
rj

�\rm

rn +
m

,

and

M(rm)
M(rn)

= `
m&1

j=n

M(r j+1)
M(r j)

� `
m&1

j=n

r j
j+1

r j
j

=
rm&1

m

rn
n

`
m&1

j=n+1

1
rj

�\rm

rn +
n

.

Since #m �#n=(M(rm)�M(rn))(rn
n �rm

m), we obtain all estimates stated in the
lemma.

Proof of Theorem 1. (1) Let pn # Pn denote the polynomial that inter-
polates to f in the n+1 zeros of the Chebyshev polynomial Tn+1(x)=
cos((n+1) arc cos(x))�2n=xn+1+ } } } . By [12, p. 50] we then have

En �&( f & pn)(x)&[&1, 1]="Tn+1(x)
1

2?i ||`|=rn + 1

f (`)
Tn+1(`)

1
`&x

d`"[&1, 1]

�
1
2n

M(rn+1)
(rn+1&1)n+1

rn+1

rn+1&1
=

1
2n #n+1 \ rn+1

rn+1&1+
n+2

.

Since, by Lemma 2, limn � � rn=�, this implies the first statement.

(2) Suppose that L is a subsequence such that

lim
n # L \

En

#n+1+
1�n

=
1
2

.

By the first part and Lemma 4 it follows that for every :>1

lim sup
n # L \ E[:n]

#[:n]+1+
1�[:n]

�
1
2

and
#[:n]+1

#n+1

�\ 1
rn+1+

[:n]&n

.

An elementary calculation then shows that limn # L E[:n] �En=0, and
Lemma 1 yields (1) for the subsequence L.

Proof of Theorem 2. (1) Suppose that (1) does not hold. Then, by
Lemma 1, there exists some :~ >1 such that

lim inf
n # L \1&

E[:~ n]

En +
1�[:~ n]

<1,
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and thus for some subsequence L� of L

lim
n # L�

E[:~ n]

En
=1.

Without loss of generality we may assume that :~ # (1, 1+$) and that
L� =L.

We fix some : # (1, :~ ) and obtain by Theorem 1 and Lemma 4

lim sup
n # L \ En

#[:n] +
1�[:n]

=lim sup
n # L \E[:~ n]

#[:~ n]

#[:~ n]

#[:n] +
1�[:n]

�\1
2+

:~ �:

lim sup
n # L \#[:~ n]

#[:n] +
1�[:n]

�\1
2+

:~ �:

lim sup
n # L \ 1

r[:~ n]&[:n]
[:n] +

1�[:n]

=0.

(2) It is well known that limn � � p*n(z)= f (z), and thus

f (z)= p*0 + :
�

j=1

p*j (z)& p*j&1(z),

locally uniformly for all z # C.
For every n # N we put Rn :=rn+(r2

n+1)1�2. Then, [z: |z|�rn] is con-
tained inside the ellipse [z: |z+(z2&1)1�2|=Rn]. Since limn � � rn=�, we
have

Rn=2rn(1+d (1)
n ), where lim

n � �
d (1)

n =0.

We fix some :$ # (1, :). For all |z|=r[:$n] the Bernstein�Walsh Lemma (cf.
12, p. 77]) yields

| f (z)|= } p*0 + :
�

j=1

( p*j & p*j&1)(z)}�| p*0 |+ :
�

j=1

&p*j & p*j&1 &[&1, 1] R j
[:$n]

�| p*0 |+ :
�

j=1

(& f& p*j&1&[&1, 1]+& f& p*j &[&1, 1]) R j
[:$n]

�| p*0 |+ :
�

j=1

2Ej&1 R j
[:$n] .

476 WOLFGANG GEHLEN



By Theorem 1 we have

Ej&1�
#j

2 j (1+d (2)
j ) j, where lim

j � �
d (2)

j =0.

To estimate | f (z)| for |z|=r[:$n] we split the series ��
j=1 Ej&1R j

[:$n] into
three parts

:
�

j=1

Ej&1R j
[:$n]= :

n

j=1

} } } + :
[:n]

j=n+1

} } } + :
�

j=[:n]+1

} } } =S1, n+S2, n+S3, n .

(a) For every 1� j�n we have by Lemma 4

Ej&1R j
[:$n] �

1
2 j #jR j

[:$n](1+d (2)
j ) j�#jr j

[:$n](1+d (2)
j ) j (1+d (1)

[:$n]) j

=M(r[:$n]) { M(r j)
M(r[:$n])

r j
[:$n]

r j
j = (1+d (2)

j ) j (1+d (1)
[:$n]) j

�M(r[:$n]) {
r j

j

r[:$n]&1
[:$n] \ `

[:$n]&1

k= j+1

rk+
r j

[:$n]

r j
j = (1+d (2)

j ) j (1+d (1)
[:$n]) j

=M(r[:$n]) { 1
r[:$n]&1& j

[:$n] \ `
[:$n]&1

k= j+1

rk+= (1+d (2)
j ) j (1+d (1)

[:$n]) j.

We choose some arbitrary :" # (1, :$). Lemma 2 yields

[ } } } ]=
1

r[:"n]&1& j
[:$n] \ `

[:"n]&1

k= j+1

rk+ 1
r[:$n]&[:"n]

[:$n] \ `
[:$n]&1

k=[:"n]

rk+
�

1
r[:"n]&1& j

[:$n] \ `
[:"n]&1

k= j+1

rk+�\r[:"n]

r[:$n] +
[:"n]& j&1

�\r[:"n]

r[:$n] +
[:"n]&n&1

.

In view of (4), an elementary computation gives

lim sup
n # L \ S1, n

M(r[:$n])+
1�n

<1.
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(b) By our choice of : we have En=$[:n]
n #[:n] , where

limn # L $n=0. Therefore, for all n+1� j�[:n],

Ej&1R j
[:$n] �EnR[:n]

[:$n]=2[:n]Enr[:n]
[:$n](1+d (1)

[:$n])[:n]

=2[:n]$[:n]
n #[:n]r[:n]

[:$n](1+d (1)
[:$n])[:n]

=M(r[:$n]) 2[:n] {$[:n]
n

M(r[:n])
M(r[:$n]) \

r[:$n]

r[:n] +
[:n]

= (1+d (1)
[:$n])[:n]

�M(r[:$n]) 2[:n]$[:n]
n (1+d (1)

[:$n])[:n],

where the last inequality follows by the definition of r[:n] . We obtain

lim sup
n # L \ S2, n

M(r[:$n])+
1�n

=0.

(c) For every j>[:n] we have by Lemma 4

E j&1 R j
[:$n]�#jr j

[:$n](1+d (2)
j ) j (1+d (1)

[:$n]) j

=M(r[:$n]) { M(r j)
M(r[:$n])

r j
[:$n]

r j
j = (1+d (2)

j ) j (1+d (1)
[:$n]) j

�M(r[:$n]) {
r j

j

r[:$n]+1
[:$n] \ `

j&1

k=[:$n]+1

1
rk +

r j
[:$n]

r j
j =

_(1+d (2)
j ) j (1+d (1)

[:$n]) j

=M(r[:$n]) {r j&1&[:$n]
[:$n] \ `

j&1

k=[:$n]+1

1
rk+= (1+d (2)

j ) j (1+d (1)
[:$n]) j.

We choose some arbitrary :" # (:$, :). Lemma 2 yields

[ } } } ]�r[:"n]&[:$n]&1
[:$n] \ `

[:"n]&1

k=[:$n]+1

1
rk+ r j&[:"n]

[:$n] \ `
j&1

k=[:"n]

1
rk+

�r j&[:"n]
[:$n] \ `

j&1

k=[:"n]

1
rk+�\r[:$n]

r[:"n]+
j&[:"n]

,
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and thus we obtain that

:
�

j=[:n]+1

Ej&1R j
[:$n]�M(r[:$n]) :

�

j=[:n]+1
\r[:$n]

r[:"n] +
j&:"n

_(1+d (2)
j ) j (1+d (1)

[:$n]) j

�M(r[:$n]) \r[:$n]

r[:"n] +
[:n]&[:"n]

:
�

j=1
\r[:$n]

r[:"n]+
j

_(1+d (2)
j+[:n]) j+[:n] (1+d (1)

[:$n]) j+[:n]

=: M(r[:$n]) \r[:$n]

r[:"n] +
[:n]&[:"n]

Sn .

An elementary calculation shows that each series Sn , n # N, is convergent
and that limn � � S 1�n

n =1. Hence, we have by (4)

lim sup
n # L \ S3, n

M(r[:$n])+
1�n

<1.

Putting (a), (b), and (c) together we obtain that for some :$ # (1, 1+$)

lim sup
n # L \ ,(r[:$n])

M(r[:$n])+
1�n

<1,

which contradicts (5).

Proof of Theorem 3. We choose

M(r)=exp({r\), i.e., rn=\ n
{\+

1�\

and obtain that for all 1�:<:$

lim
n � �

r[:$n]

r[:n]

=\:$
: +

1�\

>1.

Further, since f is of perfectly regular growth, we have

{= lim
r � �

log ,(r)
r\ = lim

n � �

log ,(rn)
r\

n

={\ lim
n � �

log ,(rn)1�n,
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which implies

lim
n � � \ ,(rn)

M(rn)+
1�n

=1.

By Theorem 2 it follows that (1) holds for L=N.
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