Journal of Approximation Theory 94, 467-480 (1998)
Article No. AT983205

On the Distribution of Alternation Points in Uniform
Polynomial Approximation of Entire Functions

Wolfgang Gehlen

Fachbereich 4, Mathematik, Universitdt Trier, D-54286 Trier, Germany
Communicated by Manfred v. Golitschek

Received December 12, 1996; accepted in revised form August 18, 1997

We consider the distribution of alternation points in best real polynomial
approximation of a function /'€ C[ —1, 1]. For entire functions /' we look for struc-
tural properties of f that will imply asymptotic equidistribution of the correspond-
ing alternation points.  © 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Suppose that fe C[ —1, 1] is a real valued function which is not a poly-
nomial and let

E,=E,(f):=min Hf_pH[—l,l]
PEPy,

sz_p;zkH[—l,l]a ne Ny,

denote the error of the best uniform approximation p¥= p¥(f) to fin the
set P, of polynomials of degree at most n. By the Chebyshev equioscillation
theorem there exist (not necessarily unique) alternation points
—1<x< ... <x,<1 such that for some 6, €{—1,1}, neN,,

(f=pH(x™)=6,(—1)/E, forall 1< <n+2.

In this note we will consider the asymptotic distribution of the correspond-
ing unit counting measures v,, n € N, defined by

__number of points x{" in B
B n+2

vl for every set Bc<[—1,1].
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468 WOLFGANG GEHLEN
From results of Kadec it follows that

THEOREM A (Kadec, cf. [6]). There exists a subsequence L=L(f) of
N, such that in the weak star topology we have

Vn*_’ﬂ[—l,l] (nel), (1)
where pi; _, 1y denotes the equilibrium distribution of [ —1,1].

Generalizations of this result and estimates on the discrepancy of v, and
Ur_1, 17 have been given, for example, in [1, 3]. If we put E, =
(1—¢,) E,, then it is known (cf. [9]) that the condition

E 1/n
lim¢l/m=1, or equivalently, lim <1 —"+1> =1 (2)

nel nel n

is sufficient (but not necessary) for (1).

In [9, 11] examples of entire functions f were constructed where (1) fails
to hold for all n as n — co. The question was raised in [9] by G. Lorentz:
What structural properties of an entire function f ensure lim,,_, , /" =1,
and thus the convergence of (v,,), for all n as n — o0?

The following lemma gives a slightly generalized version of (2). For
entire functions f it will imply a sufficient condition for (1) that depends on
growth properties of f (cf. Theorem 2).

LemmA 1. Let L be a subsequence of N such that

E 1/[an]
lim<1—][;”]> =1 forall a>1.

nel n

Then (1) holds for L.

COROLLARY. Suppose that

lim sup E/"=1/re(0, 1),

neN

ie, Ir)={zeC:|z+(z22=1)"?|=r} is the largest ellipse with foci +1
such that f is holomorphic inside I'(r). Let L be a subsequence such that

lim EV" = 1/r.

nel

Then, since lim sup,, . E%{:;,] <1/r*<1/r for every a>1, Lemma 1 shows

that (1) holds for L.
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In the subsequent text we suppose that f(z)=zj?i0ajzj is an entire
function and define

¢(r) :=max | f(z)| for all r>0.

|zl =r

Let M:[0, 00)— (0, 0) be a continuous function that satisfies lim
M(r)/r" = oo for every ne N. Then the following properties hold.

r— oo

LEMMA 2. For every neN there exists some r, >0 such that

M(r,) . M(r)
-~ min ——=:y,.
r, r>0 I

Further, for every choice of r,, ne N, we have

Fa<Fnin and lim r,= oo.

n— oo

In what follows we suppose that r,, ne N, is an arbitrary choice of the
numbers defined in Lemma 2 and that the function M gives a majorization
of | f| in the following sense:

b 5

lim sup (M(r )

neN
Obviously, we may always choose M = ¢, but in many cases it might be
easier to find some function M with the properties described above than to
determine exact values for ¢.

Remarks. (1) 1If fis of order p e (0, c0) and type 7€ (0, o0), a natural
choice of M will be M(r)=exp(zr?), such that

1/p n/p
Fo= <n> and y,= <W> :
L7 n

Since, in this case, we have

1
lim sup 7ogr<f(r)

r — o0

b

an elementary calculation shows that (3) is satisfied.

(2) For any entire function f of finite order p (without restrictions on
the type) we may choose M(r) = exp(r”"”), where p(r) is a refined order for

£ (ct. [8, p. 307).
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By means of the y,, ne N, defined in Lemma 2 we can state a simple suf-

ficient condition for (1) that corresponds to the corollary following
Lemma 1.

THEOREM 1. We have

man (522) <3
lim sup <§,

n— oo Vn+1

and if L is a subsequence of N such that
E,\'" 1
lim < z > =—,
nel \Vp41 2

Theorem 2 now gives a relation between the growth of f on certain radii
r, and the property (1) for certain subsequences L. The condition (4) is
connected to the growth behavior of the majorant M (cf. Lemma 3), while
(5) says that M should really match the behavior of | f].

then (1) holds for L.

THEOREM 2. Let L be a subsequence of N such that for some 6 >0 we
have

minf 051 forall 1<a<o' <146 (4)
nelL V[w]
and
. ¢(r[un]) tn
_— = <akK
llg(M(r[m]) 1 forall 1<a<l1+46. (5)

Then (1) holds for L.

We shall prove that (4) of Theorem 2 may be replaced by a condition on
the growth of M. By the definition of r,, we have for every >0

<M<ﬂrn>>”">ﬁrn 5

M(r,) ) T,
Thus, Lemma 3 shows that a relatively modest growth of M at r(,;, ne L,
implies (4).
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LeMMA 3. Let L be a subsequence of N such that for some o= 1 we have

<M(ﬂ”[m])

lim sup M(ro )
[an]

nel

Then it follows that

1/[an]
> —prolf—1) (Bo1%).  (6)

C T
liminf 2> 1 forall o >a
nel V[m]

From Theorem 2 we immediately obtain

THEOREM 3. Let f have finite order p € (0, o0) and type t€ (0, o0) and
suppose that fis of perfectly regular growth, i.e., that we have
log ¢(r) log ¢(r)
P

lim ———=1 instead of  lim sup

r— oo r? F— oo

Then (1) holds for L =N.

It is well known that f is of order p (0, o0) and type 7€ (0, o) if and
only if

lim sup n'” |a, |'" = (zpe) V.

n— oo

By [10, p. 100], f'is of perfectly regular growth if and only if there exists
a subsequence (71;), of N such that lim,_, , n;,/n,=1 and

lim n/” |a,, | = (tpe)"".

k— oo

We note that functions of perfectly regular growth appear as solutions
of linear differential equations with polynomial coefficients (cf. [5,
pp. 204-20817).

Moreover, there are various results relating regularity conditions on the
growth of f and the distribution of its zeros (cf., for example, [8, p. 88]).

2. PROOFS

Proof of Lemma 1. Suppose that (1) does not hold. Then there exists
some ae(—1,1] and d> 0 such that for some subsequence (n;), of L we
have

Vol —1al)—u;_119([—1,al)l=d  forall keN.
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(1) We choose a>1 so close to 1 that « — 1 <d and define

ey = max &,
ng<¢<[on]—1

and
my i=min{ j>n:e;=e;, org;>1/j}.
We then have n, <m, <[on,]—1 and, since

lim sup(1 — (1 — ek)[omk] 7nk)1/[ank]

k— oo
[an;]—1 1/[ong]
thsup(l— I1 (l—sj)>
k— oo j=ng
_ E 1/[an]
= lim (1 ——txd =1,
k— o nk

it follows by an elementary computation that lim, _, 8:,{]’("" =1
Further, we obtain that

Em 1/my, m—1 1/my, 1
1> lim <Ek> = lim { [T (1—aj)} > lim <1—>=1.

k— n k— oo j=n, k— oo
(2) The polynomial py, . (x)— py, (x) =c,,,k+1x’"k+1 + ... satisfies

(P, w1 = DA Z1(f = PO = 1(f = Pl ()]

>Emk_Emk+l

with alternating signs for all 1< j<m;+2. Since min,. P, [[xmt 1 —
p(x)|[—1,17=1/2"% this implies (cf. [4, p. 77])

|ka+l | = ka(Emk - Emk+1) = zmkgmkEmk'

The monic polynomial (py; 1 — P )(X)/Cpy 1= x™+1 4 ... therefore satisfies

(Pry+1— P )(X)

Comp+1 [—1,1]
S =pa) 1, i+ 1 =P DD =119
S 2m Emy Enm,

LEnk+Emk+l< 1 2E

N "k

2me g FE Somg E

mp T my my T my

<
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and we obtain

1/m; +1 1
<=

lim sup .
2
[—-1,1]

k— oo

H (P +1— P )(X)
C

my+1

It follows by Theorem 2.1 in [2] that the zeros of py, ., —py are
asymptotically equidistributed in [ —1, 1]. Thus, if 1, denotes the number
of zeros of pjs, 1 —pi, in {z:Re(z)e[ —1,a],Im(z) e[ —1, 1]}, we obtain

Ae/mp+1) =y 1([—1,a]) (k— o0).
(3) Since

|(pj:1k+1 - p:’lkk)(x}nk))| = Enk_ Emk+l

with alternating signs for all 1 < j<n; + 2, there must be at least one zero
of p 11 —p,’,‘fk in each interval (x{", x{")), 1§j<nk+ 1.. ' .

Therefore, if &, denotes the number of xj(."k’ in [ —1, a], it is not difficult
to see that

fkélk+l and lkgmk_(nk_ék)’
and thus

j'k_(mk_nk)gvn([_lja]): Cr <ik+1.
ne+2 k ne+2 ng+2

An elementary computation yields

app 1 19([ =1, a]) = (e—1)<liminfv, ([ —1,a])<limsupv, ([ -1, a])
k— oo

k — oo
<oy, 1]([ —1,a]),
which by our choice of a, contradicts the assumption on v, ([ —1, a]).

Proof of Lemma 2. Since

. M(r) . M(r)
lim ——= lim ——= o0,

r—-0 I ro>o I

it is clear that r, exists.

(1) Suppose that r,, , <r,. By the definition of r,,; we have

M(rn+l) M(rn)

n+1l S _n+1°
n+1 n

r
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and thus

M(rn+l)<M(rn) Fnt1 <M(rn)’
Z+1 r: I'n n

r

which contradicts the definition of r,,.

(2) Suppose that there exists some r > 0 such that r, <r for all ne N.
Then, for every s >r,

M(r,)  ,min, po 5 M(1)

n

forall neN,
r ¥

which would imply that M(s)= oo.

Proof of Lemma 3. 1f we suppose that iminf, ¢ ;(7[,n7/T[ey) =1 for
some o' > a, then, since

Frony \ L Mrpany) _ (Fram |
= = b
r[oc'n] M(r[oc’n]) r[oc’n]

there exists a subsequence L of L such that

<M(r[m]> >“M N
M(r[a’n])

lim

nei

Thus, for every f>1

<M(/3V[an])>”[°‘"]

lim sup M)
[an]

nel

= lim sup
nel

<M(ﬁr[un])>l/[m]
M(r[ocn])

M 1/[an]
=lim sup <(ﬂr[“”])>
nel M(r[a’n])

Br [wnl/ffan]
> lim sup <[°‘"]> =Bl

nel r[oc’n]
which contradicts (6).
We state some simple inequalities which are needed in the proof of

Theorem 1 and Theorem 2.

LEMMA 4. For m>=n we have

r n ’,m—l m—ll M(r) rm m—ll r m
o)< — <K =<\,
() <5 I =i =i 11 5=(2)

"n j=n+lrj Tn j:n+1rj
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G <)
rm yn rn

Proof of Lemma 4. By the definition of r; and Lemma 2 it follows that

Mir,) "y MU T T L ()
M(r,) M(r)) \] AR rZ+1j:n+1rj\ rn)

and

Jj=n 4

and

M) M) s 2 L (1)
— = = .
M(rn j=n M(}’]) j=n rjl ri"i j=n+lrj I'n

Since y,,/v,= (M(r,,)/M(r,))(r2/r7), we obtain all estimates stated in the
lemma.

Proof of Theorem 1. (1) Let p, € P, denote the polynomial that inter-
polates to f in the n+1 zeros of the Chebyshev polynomial T, (x)=
cos((n+ 1) arccos(x))/2"=x""'+ .... By [12, p. 50] we then have

LJ SO 1
2ni g =ry oy To (O E—
1 M(rn+l) r

1 r n+2
<7 n+1 =7y . _'n+1 )
2n(rn+1_l)n+1rn+1_1 2 Fpy1—1

Since, by Lemma 2, lim

[(f = pa) ”[—11] T, 1(x) dC

[-1,1]

= o0, this implies the first statement.

n— oo n

(2) Suppose that L is a subsequence such that

E, N\ 1
lim < “ > =—.
neL \Vpy1 2

By the first part and Lemma 4 it follows that for every a>1

E Ylen] 1 [an]—n
lim sup <W']> <= and Ttem+1 < <> .
i1

nelL y[otn]+1 2 Vn+1 +

An elementary calculation then shows that lim, ., E;,,;/E,=0, and
Lemma 1 yields (1) for the subsequence L.

Proof of Theorem 2. (1) Suppose that (1) does not hold. Then, by
Lemma 1, there exists some &> 1 such that

E.. o\ Vlan]
1iminf<1—g‘"1> <1,

nel n
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and thus for some subsequence L of L

Without loss of generality we may assume that ae(1,1+0) and that
L=L.
We fix some ae(1, &) and obtain by Theorem 1 and Lemma 4

) E 1/[an] E.. . 1/[an]
lim sup <"> = lim sup <[°°"] M)
nel y[un] y[&n] y[“"]

1 &/fo N 1/[on]
< <> lim sup <y[“"]>
2 nel y[otn]
S
x| A 1m Sup ] —Ton =0.
2 nel r%gxn% Len]

(2) It is well known that lim,,_, ., p¥(z) = f(z), and thus

nel

locally uniformly for all z e C.

For every ne N we put R,:=r,+ (r2+1)"2% Then, {z: |z| <r,} is con-
tained inside the ellipse {z: |z+ (z*>—1)"*| = R,}. Since lim,,, . r,,= 00, we
have

R,=2r,(1+d),  where lim d’=0.

n— oo

We fix some o' € (1, ). For all |z| =7, the Bernstein-Walsh Lemma (cf.
12, p. 77]) yields

o0

lf@I=|p§+ X (pf—pF 0@ <IpEl+ X P} =Pl —1,10 Rl

j=1 j=1

<|psl+ Z (f=piall—n, g+ 1= pf =1 19) R{zx’n]

j=1

< |p3<| + Z 2Ej71R{zx'n]'

j=1
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By Theorem | we have

E.

j—

1<%(1+d;z>)c where  lim d® =0,

j—)OO

To estimate |f(z)| for |z| =rp,,; we split the series 37

721 E;_ 1R, into
three parts

['s} n [an] 0
ZEj—lR][afn]=Z'”+ Yook Y =8, + S0, S5
Jj=1 j=1 j=n+1 Jj=lon]+1

(a) For every 1 <j<n we have by Lemma 4

1 ) ) )
Ej 1 R{yn < YR Riym(1+d?) SV a1 +d ) (1+d{),,)

M(rj) r{oc’n]

_ , _ @)/ IRY;
Mircan) {2y 2 A2 (14 dg)

r] A @) SRy,
gM(V[arn]) Toen]—1 1_[ Iy T (l+d1 ) (l+d[“rn])

pLen]
[a'n] k=j+1 J

1 [a'n] —1 . )
— M(rpny) {[]_1_< I rk>} (L +dD) (140, )

I'Larn] k=j+1

We choose some arbitrary a” € (1, «’). Lemma 2 yields

1 [a"n] —1 1 ['n] —1
{-)= r[un]l( H r>r[an][an]< 1_[ rk>

[a'n] k=j+1 [a'n] k=[a"n]

1 [a"n] —1 }’[ - [a"n] —j—1
a'n
;e (I ne )<
r ; Fro
[a'n] k=j+1 [a'n]
[e"n] —n—1
Vo
< <[°‘ & ) .
FLwn]
In view of (4), an elementary computation gives

Sl 1/n
lim sup <"> <.
nelL M(r[a’n])
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(b) By our choice of a« we have E,=06L"1y,,;, where

lim, ., 6,,=0. Therefore, for all n+ 1< j<[an],

nelL

j 1
E;, 1 R{yn < EnREZ’,’j] = 2[“"]E,,VE:7‘"]](1 + d([m),n])[“”]

1
= 2[00!]5'[10("] y[ocn]r%;{ln]](l + di:oc)’n])[w‘]

M(V on ) r[a’n] L]
= Mirap) 20 {ote S0 (1+d), )t
Leend M(”[a’n]) T'lan] Locn]

< M(r[oc'n]) 2[001](5'[1001](1 + d%loc)'n])[mn]’

where the last inequality follows by the definition of r,,;. We obtain

S2 1/n
lim sup <”> =0.
nelL M(r[oc'n])
(c) For every j>[an] we have by Lemma 4

Ej— 1 R{oc’n] < yjr{oc'n](l + dj(2))j (1 + d([{x)’n])j

M(rj) r{oc’n]
M(r[oc'n]) rj

J

¥ =l N,
J [a'n]
< M(Fpam) {r[‘”‘]“ < I1 > ,j}

[wnl k=[an]+1 "k §

~ M) { fed@y e,y

x(1+dP) (1+d(1),,)’

, , =t , .
:M(r[a,n]){rf;,}]—[“]< I1 >}(1+d}2>)f(1+d<[2,n])1.

k=[an]+1 Tk

We choose some arbitrary o” € (o, «). Lemma 2 yields

b g plend —lan] -1 T L (ot 1
{ } ST fown] 1—[ Flwn] l_[

k=[wn]+1 Tk k=[oan] Tk

-1 g\ L7
j— " o'n

<rifn (T )< (B )
k=[a'n] Tk Flarn]
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and thus we obtain that

e’} e’} V[ ] j—a'n
i a'n
Y B Rl SM(rgmy) X <>

j=[an]+1 j=[oan]+1 \'Ta"n]
2)\Jj 1 j
x(1+dP) (1+d),,)
V[ - [an] — [a"n] o0 }"[ - Jj
on on
<M(r[oc’n]) <> Z <>
FLarn] j=1 \'la"n]
2 j 1 j
X (1 d ) 0 (14 ), )+t

Froey \ (1~ 1270
. o'n
=: M(riany) <> S,

Tarn]

An elementary calculation shows that each series S,, n€ N, is convergent
and that lim SYr=1. Hence, we have by (4)

li < S; >1/n
imsup (—"— ] <1.
nelL M(r[zx'n])

n— oo

Putting (a), (b), and (c) together we obtain that for some o’ € (1, 1 +0)

, 1/n
¢(r[ocn]) > < 1’

lim sup < o)
[a'n]

nel

which contradicts (5).

Proof of Theorem 3. We choose

n 1/p
M(r)=exp(tr’), 1e., r,= <>

and obtain that for all 1 <a <o

"\ 1/p
o Try o
lim -7 — <> > 1.

n—oo I’ [on] o
Further, since f is of perfectly regular growth, we have

| 1
= lim 0290 _ i 10890 i tog )
r— oo Vp n— oo rﬁ n— oo

1/n
b
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which implies

im () =

By Theorem 2 it follows that (1) holds for L =N.

10.

11.
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